
evaluación del Haz olivococleaR Medial a tRavés de las otoeMisiones acústicas
REVISTA MÉDICA DE ROSARIO196
the advantages of stimulus frequency OAEs. J Assoc Res
Otolaryngol 4:521-540, 2003. Doi 10.1007/s10162-
002-3037-3.
26. Goodman SS, Keefe DH. Simultaneous measurement
of noise-activated middle-ear muscle reex and stimulus
frequency otoacoustic emissions. J Assoc Res Otolaryngol
7:125-139, 2006. Doi 10.1007/s10162-006-0028-9.
27. Berlin CI, Hood LJ, Hurley A, Wen H. e First
Jerger Lecture. Contralateral suppression of otoacoustic
emissions: an index of the function of the medial
olivocochlear system. Otolaryngol Head Neck Surg 110:3-
21, 1994. Doi 10.1177/019459989411000102.
28. Hood LJ, Berlin CI, Hurley A y col. Contralateral
suppression of transient-evoked otoacoustic emissions in
humans: intensity eects. Hear Res 101:113-118, 1996.
Doi 10.1016/s0378-5955(96)00138-4.
29. Goodman SS, Mertes IB, Lewis JD, Weissbeck DK. Medial
olivocochlear-induced transient-evoked otoacoustic
emission amplitude shifts in individual subjects. J Assoc
Res Otolaryngol 14:829-842, 2013. Doi 10.1007/
s10162-013-0409-9.
30. Mertes IB. Establishing critical dierences in ear-
canal stimulus amplitude for detecting middle ear
muscle reex activation during olivocochlear eerent
measurements. Int J Audiol 59:140-147, 2020. Doi
10.1080/14992027.2019.1673491.
31. Abdala C, Mishra SK, Williams TL. Considering
distortion product otoacoustic emission ne structure in
measurements of the medial olivocochlear reex. J Acoust
Soc Am, 125:1584-1594, 2009. Doi 10.1121/1.3068442.
32. Shera CA, Guinan JJ Jr. Evoked otoacoustic emissions arise
by two fundamentally dierent mechanisms: a taxonomy
for mammalian OAEs. J Acoust Soc Am 105:782-798,
1999. Doi 10.1121/1.426948.
33. Sun XM. Contralateral suppression of distortion product
otoacoustic emissions and the middle-ear muscle reex in
human ears. Hear Res 237:66-75, 2008. Doi 10.1016/j.
heares.2007.12.004.
34. Talmadge CL, Long GR, Tubis A, Dhar S. Experimental
conrmation of the two-source interference model for
the ne structure of distortion product otoacoustic
emissions. J Acoust Soc Am 105:275-292, 1999. Doi
10.1121/1.424584.
35. Shaer LA, Dhar S. DPOAE component estimates and
their relationship to hearing thresholds. J Am Acad Audiol
17:279-292, 2006. Doi 10.3766/jaaa.17.4.6.
36. Dhar S, Abdala C. A comparative study of distortion-
product-otoacoustic-emission ne structure in human
newborns and adults with normal hearing. J Acoust Soc
Am 122:2191-2202, 2007. Doi 10.1121/1.2770544.
37. Abdala C, Dhar S. Maturation and aging of the human
cochlea: a view through the DPOAE looking glass. J
Assoc Res Otolaryngol 13:403-421, 2012. Doi 10.1007/
s10162-012-0319-2.
38. Deeter R, Abel R, Calandruccio L, Dhar S. Contralateral
acoustic stimulation alters the magnitude and phase of
distortion product otoacoustic emissions. J Acoust Soc Am
126:2413-2424, 2009. Doi 10.1121/1.3224716.
39. Mishra SK, Abdala C. Stability of the medial olivocochlear
reex as measured by distortion product otoacoustic
emissions. Speech Lang Hear Res 58:122-134, 2015. Doi
10.1044/2014_JSLHR-H-14-0013.
40. Henin S, ompson S, Abdelrazeq S, Long GR. Changes
in amplitude and phase of distortion-product otoacoustic
emission ne-structure and separated components during
eerent activation. J Acoust Soc Am 129:2068-2079,
2011. Doi 10.1121/1.3543945.
41. Wittekindt A, Gaese BH, Kössl M. Inuence of
contralateral acoustic stimulation on the quadratic
distortion product f2–f1 in humans. Hear Res 247:27-33,
2009. Doi 10.1016/j.heares.2008.09.011.
42. Guinan JJ Jr. Cochlear eerent innervation and function.
Curr Opin Otolaryngol Head Neck Surg 18:447-453,
2010. Doi 10.1097/MOO.0b013e32833e05d6.
43. Lilaonitkul W, Guinan JJ Jr. Human medial olivocochlear
reex: eects as functions of contralateral, ipsilateral, and
bilateral elicitor bandwidths. J Assoc Res Otolaryngol
10:459-470, 2009. Doi 10.1007/s10162-009-0163-1.
44. Boothalingam S, Lineton B. Eect of contralateral acoustic
stimulation on cochlear tuning measured using stimulus
frequency and distortion product OAEs. Int J Audiol
51:892-899, 2012. Doi 10.3109/14992027.2012.709641.
45. Zhao W, Dewey JB, Boothalingam S, Dhar S. Eerent
Modulation of Stimulus Frequency Otoacoustic Emission
Fine Structure. Front syst neurosci 9:168, 2015. Doi
10.3389/fnsys.2015.00168.
46. Backus BC, Guinan JJ Jr. Time-course of the human
medial olivocochlear reex. J Acoust Soc Am 119:2889-
2904, 2006. Doi 10.1121/1.2169918.
47. Boothalingam S, Kurke J, Dhar S. Click-Evoked Auditory
Eerent Activity: Rate and Level Eects. J Assoc Res
Otolaryngol 19:421-434, 2018. Doi 10.1007/s10162-
018-0664-x.
48. Boothalingam S, Goodman SS. Click evoked middle ear
muscle reex: Spectral and temporal aspects. J Acoust Soc
Am 149:2628, 2021. Doi 10.1121/10.0004217.